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Introduction

Definitions

Dynamic System

a system whose state changes over time, like the system of
differential equations

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

Fixed Point

a point that is maped to itself by the function, or where for some
x* = (x1*, x2*):

ẋ1 = f1(x*) = 0

ẋ2 = f2(x*) = 0
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Introduction

Definitions
cont.

Phase space diagram

the space where all states and solutions are represented

Phase portrait

trajectories of solutions plotted on the phase space

Figure: Phase portrait of harmonic oscillator
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Definitions and Examples

Linear System

a system of differential equations that can be expressed in the form

ẋ = Ax

In the two dimensional case, this could be something like(
ẋ
ẏ

)
=

(
a b
c d

)(
x
y

)
Harmonic oscillator:

ẋ = v

v̇ = − k

m
x
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Dynamic Systems

Linear Systems

Solving Linear Systems

Expressing linear systems as ẋ = Ax is very useful

First look for solutions that stay on a straight line, some
vector v, leading to a solution x = eλtv, going through a fixed
point

Now we have λeλtv = eλtAv, or λv = Av, so v is and
eigenvector of A, with eigenvalue λ

If this is a 2 dimensional system, then often there are two
eigenvalues and two eigenvectors, so the solutions are of the
form x = c1e

λ1tv1 + c2e
λ2tv2.
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Dynamic Systems

Linear Systems

Eigenvalues and Solutions

The eigenvalues determine the behavior of the solution at the
fixed point

Linear systems are well behaved, so the behavior at fixed
points determines the behavior elsewhere

Real eigenvalues: both positive, both negative, or one of each
in 2D case:

Figure: Phase portrait of a linear system
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Eigenvalues and Solutions
cont.

Complex eigenvalues lead to different behaviors about fixed
points

Purely imaginary eigenvalues lead to ”orbits”, while complex
eigenvalues lead to spirals

Figure: Phase portraits of linear systems with complex eigenvalues
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Figure: Phase portraits of linear systems with complex eigenvalues
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Definitions and Examples

Non-Linear System

a system of differential equations that cannot be expressed linearly,
like the general system of equations

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

Typically almost impossible to analytically find trajectories

Figure: Hypothetical phase portrait of a nonlinear system
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Non-Linear Systems

Solving Non-Linear Systems

Analytically solving nonlinear systems is almost impossible

But there is hope! We can analyze nonlinear systems about
their fixed points using linearization

Systems are approximated near fixed point using the Jacobian
matrix 

∂f

∂x

∂f

∂y

∂g

∂x

∂g

∂y


These approximations are analyzed like with linear systems
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Dynamic Systems

Non-Linear Systems

Example of Solving a Non-Linear System

Consider a system describing the population growth of rabbits
and sheep

ẋ = x(3− x − 2y)

ẏ = y(2− x − y)

Figure: Analysis of the fixed points, and approximation of the solution
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Dynamic Systems

Non-Linear Systems

Chaos
and what makes non-linear systems difficult

Small changes in initial conditions lead to very different results

The Lorenz Equations:
ẋ = σ(y − x)
ẏ = rx − y − xz
ż = xy − bz

Figure: xz plane view of one trajectory
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Discrete Curve Shortening Flow

Definitions

Example

Figure: Approximate flow of a triangle under discrete curve shortening
flow
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Definitions

Definitions

Curvature

In a discrete curve, the curvature k(x) at point x is defined as
π − α, where α is the interior angle at x .

Normal vectors

The normal vector ~n(x) or ~nx at point x is defined as the
outward-facing unit vector in the direction of the angle bisector of
the angle at x .

Differential equation

We define the motion of a point x with this differential equation:

dx

dt
= −k(x)~n(x)
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Definitions

Equilateral Triangle

A
B

C

~nA

~nB

~nC

dA
dt

Figure: Equilateral Triangle
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Discrete Curve Shortening Flow

Isosceles Triangles

Parameters

Here is how we will define the isosceles triangle:

A B

C

α

x

Figure: Equilateral Triangle
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Discrete Curve Shortening Flow

Isosceles Triangles

Finding dx
dt and dα

dt

Finding the linear approximation of the triangle after small
time ε, points A′, B ′, C ′

Get differential equations using
df (t)

dt
= lim

ε→0

f (t + ε)− f (t)

ε
dx

dt
= −π + α

2
sin

π + α

4
+ cos

α

2
(α− π)

dα

dt
=

1

cosα

d sinα

dt
= lim

ε→0

sinα′ − sinα

ε
for α′ = ∠A′B ′C ′

dα

dt
=

1√
2

(π + α)(sin α
4 − cos α

4 ) + 2 sin α
2 (π − α)

x
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Discrete Curve Shortening Flow

Isosceles Triangles

Phase Plane Diagram

horizontal axis is x , vertical axis is α
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Discrete Curve Shortening Flow

General Triangles

Names and Parametrization

A B

C

c

b a

α β

γ

Figure: General triangle

For parameters, we will use α, β, and c
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Discrete Curve Shortening Flow

General Triangles

Linear approximation

Approximating the triangle after a small amount of time ε
gives 4A′B ′C ′

A B

C

A′ B′

C ′

Figure: 4A′B ′C ′



Dynamic Systems and Discrete Curve Shortening Flow

Discrete Curve Shortening Flow

General Triangles

Differential Equations

A′ =(
− c cosα sinβ

sin(α+β) + ε(π − α) cos α
2 ,−

c sinα sinβ
sin(α+β) + ε(π − α) sin α

2

)
B ′ =(
c sinα cosβ

sin(α+β) − ε(π − β) cos β
2 ,−

c sinα sinβ
sin(α+β) + ε(π − β) sin β

2

)
C ′ =

(
ε(α + β) sin α−β

2 ,−ε(α + β) cos α−β
2

)

dc

dt
= −(π − α) cos

α

2
− (π − β) cos

β

2
dα
dt =
(−(α+β) cos α+β

2
+(π−α) sin α

2 ) sin(α+β)

c sinβ +
(π−α) sin α

2
−(π−β) sin β

2
c

dβ
dt =
(−(α+β) cos α+β

2
+(π−β) sin β

2 ) sin(α+β)

c sinα +
(π−β) sin β

2
−(π−α) sin α

2
c
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General Triangles

Differential Equations

A′ =(
− c cosα sinβ

sin(α+β) + ε(π − α) cos α
2 ,−

c sinα sinβ
sin(α+β) + ε(π − α) sin α

2

)
B ′ =(
c sinα cosβ

sin(α+β) − ε(π − β) cos β
2 ,−

c sinα sinβ
sin(α+β) + ε(π − β) sin β

2

)
C ′ =

(
ε(α + β) sin α−β

2 ,−ε(α + β) cos α−β
2

)
dc

dt
= −(π − α) cos

α

2
− (π − β) cos

β

2
dα
dt =
(−(α+β) cos α+β

2
+(π−α) sin α

2 ) sin(α+β)

c sinβ +
(π−α) sin α

2
−(π−β) sin β

2
c

dβ
dt =
(−(α+β) cos α+β

2
+(π−β) sin β

2 ) sin(α+β)

c sinα +
(π−β) sin β

2
−(π−α) sin α

2
c
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Discrete Curve Shortening Flow

General Triangles

Phase Plane Diagram

Phase plane of dα
dt and dβ

dt
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Summary

Dynamic Systems

Linear systems can be solved using eigenvalues and
eigenvectors

Non-linear systems can generally not be solved directly, but
their behavior can be found with linear approximations

Discrete Curve Shortening Flow

Isosceles triangles with top angle ≥ π
3 go to points

All other triangles go to line segments

Not yet proven

Two of the angles of any scalene triangle go to π
2

The angles go to their endpoint before c goes to 0
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